Systematic Screens for Proteins That Interact with the Mucolipidosis Type IV Protein TRPML1
نویسندگان
چکیده
Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 regulates the transport steps implicated by these defects. Identifying proteins that associate with TRPML1 will facilitate the elucidation of its cellular and biochemical functions. We report here two saturation screens for proteins that interact with TRPML1: one that is based on immunoprecipitation/mass spectrometry and the other using a genetic yeast two-hybrid approach. From these screens, we identified largely non-overlapping proteins, which represent potential TRPML1-interactors., Using additional interaction assays on some of the potential interactors from each screen, we validated some proteins as candidate TRPML1 interactors In addition, our analysis indicates that each of the two screens not only identified some false-positive interactors, as expected from any screen, but also failed to uncover potential TRPML1 interactors. Future studies on the true interactors, first identified in these screens, will help elucidate the structure and function of protein complexes containing TRPML1.
منابع مشابه
The mucolipidosis IV Ca2+ channel TRPML1 (MCOLN1) is regulated by the TOR kinase
Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca(2+) efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however,...
متن کاملA small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV.
Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder often characterized by severe neurodevelopmental abnormalities and neuro-retinal degeneration. Mutations in the TRPML1 gene are causative for MLIV. We used lead optimization strategies to identify--and MLIV patient fibroblasts to test--small-molecule activators for their potential to restore TRPML1 mutant channel ...
متن کاملESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV.
Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing ...
متن کاملActivating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis.
The mucolipin TRP (TRPML) proteins are a family of endolysosomal cation channels with genetically established importance in humans and rodent. Mutations of human TRPML1 cause type IV mucolipidosis, a devastating pediatric neurodegenerative disease. Our recent electrophysiological studies revealed that, although a TRPML1-mediated current can only be recorded in late endosome and lysosome (LEL) u...
متن کاملFusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013